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ABSTRACT

There are several perennial issues concerning reliability estimation in Operational

Testing and Evaluation (OT&E). Two of these incluhe, "how should one model the

underlying failure distribution of a continuous-time system," and, "how can a testing

agency use information from DT in order to reduce OT resource requirements."

In the former issue, some OT&E analysts have questioned whether or not the

exponential failure distribution should be used in all cases for continuous-time systems,

and have suggested the Weibull distribution as an alternative in some instances. In the

latter, the notion of combining DT and OT data has been an anathema to those involved in

OT&E, however, with ever-tightening military budgets, it may be time to revisit the issue.

First, this thesis compares the exponential and Weibull failure distributions in terms of

the amount ( 1" test time needed to demonstrate, to a given level of confidence, that the true

MTTF of a system is at least as large as the minimun acceptable value, and also in terms

of the actual confidence level associated with the lower confidence level procedure when

the system has an increasing (or decreasing) failure rate function. Second, the thesis

examines the behavior of an estimator for the relationship between DT and OT failure data

using a Monte Carlo simulation. Finally, the thesis introduces a hierarchical Bayes

approach for the estimation of the relationship between DT and OT failure data when a

gamma prior distribution is assumed....
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While effort has been made, within the time

available, to ensure that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.
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EXECUTIVE SUMMARY

There are several perennial issues concerning reliability estimation in Operational

Testing and Evaluation (OT&E). One of these is, "how should one model the underlying

failure distribution of a continuous-time system," and another is, "how can a testing

agency use information from Developmental Testing (DT) in order to reduce Operational

Testing (OT) resource requirements."

The purpose of this thesis is to (1) investigate the behavior of a statistical procedure

used to determine the length of time needed to test a continuously operating system when

the system under test is assumed to have an exponential time to failure distribution, but

when in fact the system does not have an exponential time to failure distribution and rather

may have a time to failure distribution that more closely resembles a Weibull distribution;

(2) to examine the behavior of a maximum likelihood estimator for the relationship

between DT and OT failure rates using a Monte Carlo simulation; and (3) to introduce a

hierarchical Bayes method for estimation of the relationship between the DT and OT

failure rates. In the first part of the thesis, the parameters of the procedure are chosen

based on the assumption of an exponential time to failure distribution. The behavior of the

procedure is then investigated under the assumption that the time between failures are

independent, having a Weibull distribution with the same mean time to failure. The

intention is to test whether or not use of the Weibull distribution will result in fewer test

hours to verify that a system under test has a mean time to failure which meets or exceeds

a minimum acceptable value at a given level of confidence, and also to test whether or not

the OTAs are misstating the confidence they report in their operational testing results

when the exponential distribution is used to model a system whose true failure rate

function is that of a Weibull distribution. In the second part of the thesis, a maximum
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likelihood estimator is examined in terms of the consistency and variability of the OT

failure rate derived using that estimator compared to other methods of establishing the OT

failure rate. Finally, in the third part of the thesis, a hierarchical Bayes model is proposed

for the ultimate purpose of being able to describe the mean and variance associated with a

random relationship between DT and OT failure rates.

The comparison of the exponential and Weibull failure models suggests that

operational testing agencies can, under certain circumstances, reduce the amount of time

needed to demonstrate that the mean time to failure (MTTF) of a continuously operating

system is at least as large as the minimum acceptable value (MAV) if the system's true

underlying failure distribution is Weibull with shape parameter J3 * 1. However, the shape

parameter is seldom, if ever, known or even estimable without expending valuable test

resources, so it is unlikely that an operational testing agency (OTA) could actually save

any time or resources with this methodology. Moreover, from the perspective of

confidence levels, the analysis suggests that confidence in one's result is not sacrificed

when the exponential distribution is used to model a system which has a non-constant

failure rate, since it appears that use of the exponential distribution on a truly Weibull

system seems to cause the OTA to overestimate the number of hours needed to test the

MAV for the MITF to a given confidence level, and also to underestimate the confidence

it reports in its results under the incorrect assumption of an exponential distribution. The

thesis also points out, however, that these results may not be true in general. Therefore, it

is concluded that there is currently little to be gained by attempting to model the time

between system failures with the Weibull distribution as previously suggested, particularly

if very few observations of time to failure are available.

The second analysis indicates that the maximum likelihood method for estimating a

system's OT failure rate given that system's DT failure rate as well as failure data on

Vii



previous similar systems produces a reasonable estimate of the actual OT failure rate

(when the OT failure rate behaves as expected). In fact, the estimate provided by the

maximum likelihood method appears to be nearly as good as direct observation of the OT'

failure rate obtained through actual testing. Thus, if it can be shown that inferences about

the failure rate of a system can in fact be made on the basis of previous similar systems,

then the maximum likelihood method of predicting a new system's OT failure rate from

previous DT failure data has some potential utility. In particular, this OT failure rate

prediction could be used in ways which would aid decisions as to when to begin OT as

well as to augment follow-on OT in an effort to reduce needed testing resources.

The third analysis is incomplete. It was hoped that the hierarchical Bayes method

given would provide a means by which to estimate the relationship between the DT and

OT failure rates when the relationship is assumed to be a random variable with some prior

distribution. Regretfully, the equations derived for the maximum likelihood estimators for

the parameters of the gamma prior have proved to be difficult to solve satisfactorily. If a

solution to these equations were available, it could be used to predict future failure rates

by means of a Bayesian calculation. Investigation of such a procedure is left for a later

time.
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L. INTRODUCTION

There are several perennial issues concerning reliability estimation in Operational Test

and Evaluation (OT&E). In continuous systems, such as radios, radars and other items

that operate continuously while in use, one perennial issue is "how should one model the

underlying failure distribution of the system?" Another is "what can be done to reduce the

amount of testing resources needed during OT&E?"

Historically, OT&E organizations, such as Commander, Operational Test and

Evaluation Force (COTF), have used the exponential distribution to model the behavior of

the reliability of a continuous-time type system. The assumption of an exponential time to

failure distribution results in a required test period of three times a given minimum

acceptable value (MAV) for the 80 percent lower confidence limit for the mean time to

failure (MTTF). As long as fewer than two failures occur during this time, then COTF

will report 80 percent confidence that the true MTTF of the system is at least as large as

the MAV (COTF, para. 204.a.(3), 1992). COTF analysts have questioned whether or not

the exponential distribution is the best underlying failure model to use, a.nd have

considered investigating alternative distributions (Madson, 1993). One possible

alternative in question is the Weibull distribution, which contains the exponential

distribution as a special case. The main difference between the two underlying failure

distributions is that the exponential distribution has a constant failure rate function

throughout the lifetime of the system, and the Weibull distribution has a changing failure

rate function (either increasing, constant or decreasing) during the lifetime of the system.

The idea is that the Weibull distribution might provide a "better fitting" model for certain

systems which might then reduce the amount of test time needed to demonstrate, to a

given confidence level, that the true M'ITF of a system is at least as large as the MAV.
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A third perennial issue is that of combining Developmental Testing (DT) failure data

and Operational Testing (OT) failure data in a way that would reduce the overall amount

of resources needed to establish the nliability of a system. For example, Gaver and

Jacobs (1994, p. 1) describe the following problem setting:

A test and evaluation analyst has in his possession historical (time-between-failure
or equivalent) data for both the ...DT ...and... OT... phases of a number of projects that
are roughly comparable: they are all C3/I systems, perhaps. It is believed that there
may be a usefully exploitable relationship between the DT and OT data. If this
relationship could be quantified then perhaps it could be used to augment DT data
for a new project of the same type, thereby obtaining some anticipation of the OT
data for that new project...

Gaver and Jacobs (1994, p. 5) go on to devise an estimator for the relationship

between the DT data and OT data and describe its application thusly:

The ultimate application of the above (relationship) is to (a) anticipate failure
patterns during Operational Testing, given data on failures during Developmental
Testing; this might aid in the decision as to when to begin OT; and (b) to
strengthen, and reduce uncertainty of, the post-DT estimates of...(system
reliability)...by incorporating the DT data.

Of course, in the preceding example, it is assumed that the relationship between the

DT and OT failure rates is constant across all "similar" systems. It is far more likely that

the relationship follows some probability distribution. Thus, a hierarchical approach for

the description of this relationship may be appropriate. One such approach is outlined in

the last part of this thesis.

The notion of combining DT and OT data has historically been an anathema to those

involved in OT&E. The primary reason for this is that the Operational Testing Agencies

(OTAs) have, rightly so, desired to be completely independent of the Developmental

Agencies (DAs). However, with the tight budgets facing all military organizations of late,

it may be time to re-visit the idea of using previous DT data to supplement OT data in an
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effort to reduce the amount of testing resources needed to establish a system's reliability in

OT&E.

The first goal of this thesis is to compare, through a sensitivity analysis, the

exponential and Weibull failure distributions in terms of the amount of test time needed to

demonstrate, to a given level of confidence, that the true MTTF of a system is at least as

large as the MAV, and to find the actual confidence level associated with the lower

confidence limit proced' e when the system has an increasing (or decreasing) failure rate

function. The former tests whether or not use of the Weibull distribution will result in

fewer test hours to establish reliability with a given confidence level. The latter tests

whether or not the OTA is overstating (or understating) the confidence it reports in its

results when the exponential distribution is assumed but the system's true failure rate

follows a Weibull distribution.

The second goal of this thesis is to examine the behavior of the estimator for the

relationship between DT and OT data devised by Gaver and Jacobs (1994) using a Monte

Carlo simulation. The behavior to be examined includes the consistency and variability of

the OT failure rate derived using this estimator compared to those of other methods of

establishing the OT failure rate, including direct observation of the OT data and a

weighted average between direct observation and the Gaver-Jacobs estimate of the OT

failure rate.

The third goal of this thesis is to introduce a hierarchical Bayesian approach for the

estimation of the relationship between DT and OT data using a gamma prior distribution.

Note that the methods used for borrowing DT information to assist in predicting OT

information, or actual later field experience, can also be used in other situations. For

example, suppose an upgrade of an existing system is to be evaluated. Then actual data

from the existing system may be scaled to the new system in a manner analogous to that

3



already described for DT-to-OT scaling. Note also that the general procedure described

can be adapted to other operational parameters. An example might be an effectiveness

parameter such as projectile dispersion around an aim point, technically speakiug, a

variance parameter. Under current conditions of declining resources such an approach

could be of considerable value in enhancing the accuracy of many types of test data.

4



I. COMPARISON OF EXPONENTIAL AND WEIBULL DISTRIBUTIONS

A. EXPONENTIAL MODEL

One of the simplest and most popular ways to model the distribution of the random

time to failure of a continuous time system is with the exponential distribution. Among

the reasons for the popularity of the exponentiel distribution are its simplicity, ease of use,

and the memoryless property which says that the probability of failure within the next t

time units is independent of the frequency of any previous failures.

Let T = random time to failure of a system,
t = length of time system is in operation,
7 = failure rate.

The time to failure, T, of a system follows an exponential failure distribution if the

probability density function (PDF) is

f(t) = ,t 2! 0 (2.1)

and if its cumulative distribution function (CDF) is

F(t) = 1-e t tO>(2) 0

=O,t<O 
(2.2)

If the times between system failures are independent and have the exponential

distribution specified above, then the system's mean time to failure (M1TF) is

1
MTTF = E[T] = -- (2.3)

and its failure rate function is

f (t)
h(t) = = . (2.4)

1-F(t)

5



This distribution is used by the analysts and Operational Test Directors (OTDs) at

COTF primarily to determine the length of time needed to test a given continuous time

system in order to demonstrate that the true MTIT of the system is greater than or equal

to the MAV for the MTTF with approximately known confidence. The basic assumption

associated with the exponential distribution is that the system under scrutin) exhibits

steady state performance; that is, the time between failures are independent and have a

common exponential distribution. In other words, it is assumed that the failure rate

function, h(t), is constant over time: there is no "reliability growth," or degradation.

COTF's usual policy is to conduct sequential tests. That is, they will test one system

for a pre-determined length of time. If it fails before the time on test expires then they will

repair the system and continue the test. If the repaired system fails before the remaining

time on test then the system fails the test, else it passes. In other words, if there are zero

or one failures during the time on test, then the system passes (COTF, para. 602.a, 1992).

Let (x = confidence level,
0 = MAV for the M=ITF,
T2 = time to 2nd failure,
N(t) = number of failures to occur in [0, t].

The time, t, needed for 100(a) percent confidence, with no more than one failure

allowed during testing, required to demonstrate that the system meets the MAV for the

MTTF, 0, is determined as follows:

1 - a > P(T2 > t) = P(N(t) < 1)

) - e-(2.5)

6e 01!k ) - "
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Standard procedure at COTF is to set the confidence level at SO percent and to allo%

for a maximum of one failure to occur during the operational test. Solution of equation

(2.5) with a = 0.80 gives a time to test. t = 30.1 In other wrds. COTF will plan to test a

continuous time system for a period of time which is three times greater than the MAV for

the MTTF. and if the system has fewer than two failures in this time, then the system

passes the test at the 80 percent confidence level. Note that other combinations of test

times and acceptable numbers of failures can yield the same confidence, but the above has

been chosen as a practical compromise.

For example, if the MAV for the MTTF is 1000 hours, COTF will test the system for

3000 hours and allow at most one failure to occur. If the system passes this test, COTF

will report that it is 80 percent confident that the system's true MTTF meets or exceeds

the MAV.

Implicit in the preceding model, however, is the notion that if the expected value of

the time between failures for one system is greater than or equal to the expected value of

the time between failures for a second system, then the probability of having J or fewer

failures in a renewal process observed for a fixed time for the first system is at least as

large as that for the second system given the same fixed time.

Let X = time to 1st failure of system 1, X - exp(71),

Y = time to 1st failure of system 2, Y - exp(-y2), -y, 5 72.

Proposition 1: If E[Xj] _ E[Y] then P(Nx(t) S 1) >_ P(N,(t) :_ 1) V t.

Proof: y/ < y2  =) E[X] = l/'y, > E[Y] = ly 2

l 1 :: Fx (t)=e-' t  > F e(t) -T 't  V t _> 0

1An interesting, and simpler, alternative method for determining t exists, involving the chi-square

distribution. See Appendix A for details of the alternative method.
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Let NxO) = the numbet of renewals that occur in a renewal
process having inter-arrival distribution Fx(t),

NY(t) = the number of renewals that occur in a renewal
process having inter-arrival distribution Fy(t).

then Fx(t)>FY(t) *Nx(t). Ny(t) Vt_>0 (Ross, p.257, 1983),

which means that P(Nx(t) < 1) >_ P(N,(t) !5 1). Q.ED.

Note that Proposition I may not be true for all eligible distributions. However, tht

fact that it is true for the exponential distribution enables one to use the COTF procedure.

B. ON CONFIDENCE LEVELS

One might ask at this point how COTF defines "level of confidence." As used in

equation (2.5), the confidence level is actually the "producer's risk." When COTF desires

to test a system's MTTF with 80 percent confidence, this means they are willing to assume

a 20 percent (or smaller) risk of incorrectly recommending a system for production based

on the results of their test.

Let Nx(t) and Ny(t) denote, respectively, the number of renewals to occur in two

renewal processes having distribution Fx(t) and Fy(t). Ross (p. 257, 1983) shows that if

Fx(t) 2!Fy(t) then P(Nx(t) < 1) > P(Ny(t) < 1). Since Fx(t) > Fy(t) implies that E[X] _>

E[Y], the result shows that under this additional assumption, if the true MTTF of the

system is less than the MAV, 0, and the desired level of confidence is a, then Ross's result

implies that P(N(t) - 1) < 1 - a and P(N(t) > 1) > a.

In other words, if COTF conducted the same test many times on a system with

exponential times between failures, and if the true MTTF were actually less than the

MAV, 0, then the observed time for the second failure to occur, T2, would fall below 30

more than 80 percent of the time (in which case COTF would correctly reject the system).

Consequently, less than 20 percent of the time the observed time for the second failure to

8



occur, T2 , would lie above 30 (in which case they would incorrectly accept the system).

Symbolically, COTF desires:

P(accept the system I true MTTF < MAV) 5 .20.

There is an interesting implication to this requirement. In order to have any

appreciable chance of passing a test set up according to COTF standards, the DA must

build its system such that its true MTTF is much greater than the MAV (Keller, 1993). If

the system's M= is equal to the MAV, then it has only a 20 percent chance of passing

the test.

Note carefully: the above does nt say that if the test leads to acceptance, i.e., that

fewer than two failures are observed in three times the MAV, then the probability is 80

percent that the true MTTF is greater than the MAV. This statement is specifically not

allowed in the present framework.

C. WEIBULL MODEL

An alternative, and more general, way to model the probability of failure of a

continuous system is with the Weibull distribution. The Weibull distribution is useful

when the system under scrutiny displays either an increasing or decreasing failure rate over

time. An example of a system with an increasing failure rate function would be one that

"wears out" over time. A system that exhibits "wear out" would tend to have a higher

failure rate in old age than an identical system which is younger. An example of a system

with a decreasing failure rate function would be one that "wears in" over time. Certain

electronic devices may exhibit "wear in" tendencies, at least initially.

9



Let T random time to failure of a system,
t = length of time system is in operation,

= scale parameter (characteristic life),
13= shape parameter.

The time to failure, T, of a system follows a Weibull failure distribution if the

probability density function (PDF) is

f(t) = 13 Xt-e-W, t ->0, 13 > 0, X > 0 (2.6)

and if its cumulative distribution function (CDF) is

F(t) =1 -e-("?, t C 0,13 > 0, X > 0 (2.7)

=0, t <0.

If the times between system failures are independent and have the Weibull distribution

specified above, then the mean time to failure (MTrF) of the system is

MTTF = E[T] = (2.8)

and its failure rate function is

f (t)
h(t) = I-F(t) =Wt13ta_. (2.9)

This distribution has been considered as a replacement for the exponential distribution

with the hope that it might more precisely model many of the systems under test by COTF.

In this model, X is analogous to the exponential failure rate, y. The shape parameter, 13,

determines whether the system's failure rate is increasing, decreasing, or constant over

time. When 13 is less than one, the failure rate function is decreasing, when 0 is greater

10



than one, the failure rate function is increasing, and when P3 is equal to one, the failure rate

function is constant. Note that when P is equal to one, the Weibull distribution is the

exponential distribution.

There is a useful relationship between the exponential M=ITF, 0 = Ity, and the

Weibull parameters X and 13 (when the exponential and Weibull MTITs are equal):

y )L 1 (2.10)

This relationship will be useful when comparing the performance of the two distributions.

Let a = confidence level,
T2 = time to 2nd failure,
N(t) = number of failures to occur in [0, tQ.

The time, t, needed for 100(a) percent confidence, with no more than one failure

allowed during testing, required to demonstrate that the system meets the MAV for the

MTTF, 0, may be determined, using an adaptation of the test for the exponential

distribution, equation (2.5), to the Weibull distribution as follows:

I-a Ž> P(T 2 > t) = P(N(t) <1) = P(N(t) = 0)+ P(N(t) = 1)

P(N(t) = 0) -

P(N(t) = 1)= JFT, (t - x)fT. (x)dx = xV.PJ x1e-z-+(x÷']dx
0 0

t

I-a(x > e- + P-I (2.1 1)
0

11



Solution of equation (2.11), with a, 13, and X specified gives the appropriate time to

test, t. Note, however, that there is no closed form solution for t in this inequality. It

must be solved by numerically integrating for a number of t-values.

Implicit in the preceding model, again, is the notion that if the expected value of the

time between failures for one system is greater than or equal to the expected value of the

time between failures for a second system, then the probability of having J or fewer

failures in a renewal process observed for a fixed time for the first system is at least as

large as that for the second system given the same fixed time.

Let X = time to 1st failure of system 1, X - Weibull( 1, •-,
Y = time to Ist failure of system 2, Y - Weibull( X,2), X• <; X2, 3t 0.

Proposition 2: If E[X] > E[Y] then P(Nx(t) < 1) > P(Ny(t) < 1) V t.

Proof: X, S X2 E[X] = - E[Y]•-• _X

X, <S X2 Fx(t)=e"4Itf > FY(t)=e"-()'f Vt>0,13>0

Let Nx(t) = the number of renewals that occur in a renewal
process having inter arrival distribution Fx(t),

Ny(t) = the number of renewals that occur in a renewal
process having inter arrival distribution Fy(t).

then Fx (t) > Fy (t) = Nx(t) <_s. Ny(t) V t >0 (Ross, p.257, 1983)

which means that P(Nx(t) _ 1) > P(N,(t) < 1). Q.ED.

D. TEST TIME NEEDED TO DEMONSTRATE A THRESHOLD

Suppose COTF is testing a new radar system whose MAV for MTTF is 1000 hours.

Suppose further, for the time being, that the radar system's true MTTF is in fact 1000

hours, i.e., y = 0.001. Using the assumption of a constant failure rate function, and the

thumb rule of 80 percent confidence with no more than one failure, COTF would then test
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the system for 3000 hours and allow at most one failure to occur. If the system passes this

test, COTF will report that, with 80 percent confidence, the radar system M[TTF meets or

exceeds the MAV.

Now suppose COTF wishes to model this system's behavior with a Weibull

distribution. Several choices for the shape parameter, J3, are available. Assume that,

depending on the platform on which the radar system will be deployed, the shape

parameter may vary anywhere between 0.5 and 3.0. The relationship derived in equation

(2.10) can now be used to match the MTTF of the exponential distribution, 1/7, to the

MTITF of a Weibull distribution given various shape parameters, 0, as seen in Table 1.

TABLE 1
RELATIONSHIP OF EXPONENTIAL FAILURE RATE, y, TO WEIBULL SCALE

PARAMETER, X, TO MATCH MTTFs FOR DIFFERENT WEIBULL SHAPE

PARAMETERS,

Exponential Weibull Weibull
failure rate, y shape parameter, F(1,2) scale parameter, X

0.001 0.5 1 0.002
0.001 1 1 0.001
0.001 2 1.7725 0.000886
0.001 3 2.6789 0.000893

Now it is possible to use equation (2.11) to derive the appropriate test times for the

preceding values of 03 as shown in Table 2, again assuming a confidence level of 80

percent, and allowing for at most one failure to occur.2

2The author solved equation (2.11) using MathCad version 3.1, varying t in one hour increments until the
inequality was satisfied.
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TABLE 2
TEST TIMES ASSOCIATED WITH VARIOUS WEIBULL

__.....____SHAPE PARAMETERS, 3_
) , t (hrs)

0.5 0.002 2950
1 0.001 3000
2 0.000886 2613
3 0.000893 2435

This analysis suggests that, everything else being equal, the assumption of an

exponential failure distribution (1 = 1) generates the longest test time to demonstrate that

the system meets or exceeds the MAV for MTTF at an 80 percent confidence level. In

other words, if it is reasonable to assume that the system under test follows a Weibull time

to failure distribution, and if the OTA can identify a reasonable P3 value for the system

(where 13 * 1), then by modeling the system with a Weibull failure distribution the OTA

may be able to reduce the required number of hours needed to demonstrate that the

system meets or exceeds the MAV for MTTF for a Weibull distribution with the same

shape parameter while maintaining the same level of confidence in its result.

E. USE OF EXPONENTIAL MODEL ON A WEIBULL PROBLEM

Now suppose COTF uses its traditional rule for determining time needed to test the

radar system. Earlier it was shown that for an exponential failure distribution with a MAV

for MTTF of 1000 hours, it was necessary to test the radar system for 3000 hours,

allowing for at most one failure, to obtain 80 percent confidence that the true MTTF met

or exceeded the MAV. Suppose it is later discovered that the true underlying failure

distribution was actually Weibull with shape parameter P * 1. What can then be said

about the actual level of confidence achieved from the test? Is it still 80 percent?

One way to explore this is to hold the test time constant at 3000 hours, and determine

the probability of passing the test ( 1 - ot ) and also the level of confidence ( a ) achieved
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when the underlying failure distribution is Weibull. This can be accomplished using

equation (2.11) by fixing the rime to test, t, at 3000 hours, specifying I0 and X, and then

solving for cc. Results are shown in Table 3.3

This analysis seems to suggest that no confidence is lost by assuming an exponential

failure distribution when the true underlying failure distribution is Weibull with parameter

3 > 1. This makes intuitive sense. As was suggested back in Table 2, for any 3 > 1, the

required test time is reduced, thus if the system is tested longer than necessary to achieve

80 percent confidence, as occurs in Table 3 when 3 > 1, then it naturally follows that the

actual confidence level in the result of the test should increase.

TABLE 3
ACTUAL CONFIDENCE LEVELS ACHIEVED AS A FUNCTION OF

THE SHAPE PARAMETER, 03, WHEN EXPONENTIAL
DISTRIBUTION IS USED TO MODEL A WEIBULL (03,k) PROBLEM

X t (hrs) P(pass test) Conf. level
(1-a) (a)

0.5 0.002 3000 0.196 0.804
1 0.001 3000 0.200 0.800
2 0.000886 3000 0.097 0.903
3 0.000893 3000 0.028 0.972

Unfortunately, the results of this analysis may not hold under all circumstances. The

reason for this is because Propositions 1 and 2 no longer apply. In other words, the fact

that E[X] > E[Y] no longer implies that P(Nx(t) < 1) > P(Ny(t) _< 1).

Let X = time to 1 st failure of system 1, X - exponential(7),

Y = time to 1 st failure of system 2, Y - Weibull( P3, X).

3Results obtained by solving equation (2.11) using MathCad 3.1, varying a until the inequality was met.
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Assume: E[X] = 1> E[Y] = r(__

Unfortunately - _< ___does not imply that
Y P

Tx(t)=et _> TY(t)=e-""'• )Vt_>0,_>0.

Therefore, P(Nx(t)!_l) > P(Ny(t)_<l) cannot be shown using the proof given for

Propositions I and 2.

Thus, the reader is cautioned not to generalize the result obtained in the previous

analysis. It is unclear how the renewal process with exponentially distributed inter arrival

times compares to the renewal process with Weibull distributed inter arrival times when

their mean arrival times are equated.

F. CONCLUSIONS

The preceding analyses suggest that the OTA can in fact reduce the amount of time

needed to test a system for mean time to failure if the system under test follows a Weibull

failure distribution with shape parameter 3 > 1, and if this shape parameter is known or

can be estimated. Unfortunately, the shape parameter 03 is seldom, if ever, known, and it is

also difficult to estimate without prior testing, which tends to make moot the notion of

using the Weibull failure distribution to reduce needed test resources. 4 So, from this

perspective, one can conclude that there is probably little utility in the OTA attempting to

model system reliability using the Weibull distribution as previously suggested.

Moreover, from the perspective of confidence levels, it remains unclear how the use

of the test based on the exponential distribution, when applied to a Weibull problem,

4The Gaver-Jacobs method for "borrowing information" from previous similar systems may be useful in
this regard. Details of the Gaver-Jacobs method is given in the next section.
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affects the actual confidence levels achieved. Analysis suggests that, for purposes of

making inferences about the mean time to failure, it might be perfectly safe for the OTA to

use the exponential failure distribution to model a system that would perhaps more

appropriately be modeled using the Weibull distribution, since, as suggested in Tables 2

and 3, modeling a system which has a Weibull failure rate function with the exponential

distribution seems to cause the OTA to overestimate the number of hours to test, which in

turn seems to provide more confidence in the result of the test. It will be desirable to

investigate conditions under which this conservatism property is generally true.

Finally, it should be remembered that OTAs such as COTF tend to perform testing at

the system level in which there are numerous competing failure modes. It is well-

established in the literature (e.g., NAVORDSYSCOM, p. 3-25, 1971) that as the number

of competing failure modes increases, the occurrence of any one failure tends to occur at a

constant rate, regardless of the individual underlying failure distributions. So, despite the

warning concerning modeling a Weibull system with an exponential time between failure

distribution, for purposes of making inferences about the mean time to failure, with larger

systems it is not necessarily inappropriate to assume an exponential failure distribution

with a constant failure rate function.
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III. ON COMBINING DT AND OT FAILURE DATA

A. BACKGROUND AND PROBLEM DESCRIPTION

It has recently been postulated that there may be a useful relationship between

Developmental Testing (DT) and Operational Testing (OT) time-between-failure data for

many systems. In fact it has been noted anecdotally by some researchers that the OT

failure rate tends to be roughly four times the DT failure rate for a given system.5 Gaver

and Jacobs (1994) note that if this relationship could be quantified, then it could be used

to anticipate the OT failure rate of a new, similar system based on the DT failure rate from

that system.

1. Example Problem Setting

An OT&E analyst has in his possession historical time-between-failure data for

both the DT and OT phases of ten projects that are similar, e.g., radar systems. The

analyst believes a relationship exists between the DT and OT failure rates such that

X. (i) = K)d(i) (3.1)

where X. (i) represents the OT failure rate of system i, Xd (i) represents the DT

failure rate of system i, and K represents a constant of proportionality 6 and where the

times between failures are independent, having an exponential distribution with means

l/k 0 (i) and l/Xd (i), respectively. The analyst further believes that if he can determine the

5Interview between D. P. Gaver, Professor of Operations Research, Naval Postgraduate School, and the

author, March 1994.

6The author recognizes that this "constant" of proportionality is actually a random variable with a

distribution of its own. Refer to section E of this chapter for a Bayesian method of estimation of K.
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value of K, then he can use this value on an 1 Ith similar system to anticipate the OT

failure rate of System 11 given System I I's DT failure data.

B. THF GAVER-JACOBS MODEL

Suppose Td(i;j) is a random variable representing the time between the (j-1)st and the

jth time to failure in DT of system i where failures occur according to a Poisson Process

such that

P{T, (i, j)> t,= I e- ")t'd , td 0. (3.2)

Suppose further that a similar relationship holds for To0(i;j), the random variable

representing the time between the (j-l)st and the jth time to failure in OT of system i

P[T.(i~j)>t.=e-'(i* . t.2-!0. (3.3)

Then Nd(td(i)) is the number of failures to occur during DT for a test of length td(i)

fixed in advance, and has a Poisson distribution, i.e.:

P{Nd (td (i)) = ni = e-'-(d (i)td ()) n = 0, 1, (3.4)

An equivalent distribution holds for OT.

Assume that for each system i, there are nd(i) DT failures in a test of length td(i), and

no(i) OT failures in a test of length to(i). Gaver and Jacobs (p. 3, 1994) have devised a

maximum likelihood estimator for the constant of proportionality K as follows:

The likelihood function is

I -;. ,,.nef (Wto W(i))ni )i

L(.Xd,_Ao;data) = -Ie-d(i)td(i) e-(i)t(i))
nd (i)! no (i)!
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where I denotes the total number of similar systems. Now assume X.0(i) = K.Xd (i); then,

up to irrelevant constants, the likelihood of K and the development parameters is

-YI Xdt(i)t4t(i)-Ky. kd' ()t. (i) I

L(K, ,d(i);data) = e -d,(,( X (d (i ) K .(i)K d (i)no(i)

i=1 (3.6)
- Kno I" e-•ci) t (i)+Kt(i))d (i)fl i(*.bi)

i=1

where no = no (i), the total number of OT failures across all systems. Focusing on the
i=!

parameter K above, take the natural logarithms of both sides of equation (3.6) to get

I

t(K, Xd (i);data) = no In K- Xd (i)(td (i) + Kto (i)) (3.7)

then differentiate with respect to K to get

-- = Kn- X-dto (3.8)
•K K

then finally set equation (3.8) equal to zero and solve for K to get the maximum likelihood

estimator

k =(3.9)
Xdto

where X.d t" = X,)Ld (i)to(i), and to(i) is the length of time over which system i is subjected
i=1

to test in OT. Unfortunately Xd (i) is unknown, but may be estimated as follows:

d () nd (i) (3.10)
td(i)

The properties of this estimator for K are as yet unknown and will be investigated

shortly. Meanwhile, notice that, assuming k is well-hehaved, the analyst now has a
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mechanism for relating past DT failure data on a system to future OT failure data on the

same system given historical DT and OT failure data from similar systems. Specifically

X.(i) = IUd(i). (3.11)

C. ANALYSIS OF THE GAVER-JACOBS MODEL

The test of the performance of the estimator, k, and the follow-on estimate i. (i),

was conducted using a Monte Carlo simulation. The idea was to simulate ten "similar"

systems (Systems 1 through 10) whose actual OT failure rates were four times their actual

DT failure rates. Each system was tested for a length of time, t, such that the mean

number of failures in (0, t], Xt, was equal to 4.0 for each system. 7 Associated with each

system was a random number seed which was used with a Poisson random number

generator, written by the author in Turbo Pascal 6.0, the code for which is included in

Appendix B. A summary of the initial data is given in Table 4.

1. Estimation of K.

Next, 1000 separate observations of the number of OT failures and DT failures

observed over the appropriate test time for each system were generated using the random

seed indicated in Table 4. Then, k was derived using equations (3.9) and (3.10) for each

of the 1000 repetitions yielding 1000 separate observations of k. Appropriate statistics

were gathered on k. Table 5 summarizes these statistics and Figure 1 shows a histogram

of the observations of k.

7This number was chosen arbitrarily, but was kept constant to simulate consistent choice of test duration.
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TABLE 4
INITIAL DATA ON TEN "SIMILAR" SYSTEMS IN WHICH

ACTUAL K = 4.0 AND ACTUAL POISSON FAILURE RATE Xt = 4.0
System Actual DT DT test DT Actual OT OT test OT
number failure time Random failure time Random

rate (hours) seed rate (hours) seed
1 0.0002 20,000 10 0.0008 5,000 110
2 0.0004 10,000 20 0.0016 2,500 120
3 0.0006 6,666.67 30 0.0024 1,666.67 130
4 0.0008 5,000 40 0.0032 1,250 140
5 0.001 4,000 50 0.004 1,000 150
6 0.002 2,000 60 0.008 500 160
7 0.004 1,000 70 0.016 250 170
8 0.006 666.67 80 0.024 166.67 180
9 0.008 500 90 0.032 125 190
10 0.01 400 100 0.04 100 200

TABLE 5
SUMMARY STATISTICS ON 1000

OBSERVATIONS OF k
Mean 4.040

Std Error of the Mean 0.030
Median 4.000

Std Dev of the simulated values of K 0.939
Variance of the simulated values of K 0.882

Kurtosis 0.677
Skewness 0.675

Range 5.779
Minimum 1.913
Maximum 7.692

Sum 4039.955
Count 1000
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Figure I - Histogram of 1000 observations of estimate of K.

2. Estimation of the OT failure rate.

While information about the sampling distribution of IK is interesting, the real

focus of this study is on how well the analyst can predict the OT failure rate. Three

methods for estimating the OT failure rate are being considered in this study:

1. Prediction using the relationship Xo (i) = KId (i);

2. Direct observation of the OT failure rate from OT data; and

3. Weighted average of the two previous methods.

In each of the three methods, the following are calculated:

1. The estimate for the OT failure rate;

2. The variance of the estimate, derived appropriately from each method;

3. The standard error (square root of the variance) of the estimate; and

4. The mean-squared error, which is the sum of the square of the average of the biases

and the average of the variances over all replications.
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Figure 2, below, describes one replication of the OT failure rate estimation

simulation model.
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simplifying gives:

Varl.,l ,1)1 = Vart•KVar[X.d(11)] + Var[KIE[Ia(11)12) + Var[(1)IE[K] 2 0 (3.13)

Expressions are needed for Var[K] and Var[Xd (11)]. An approximation to

Var[lK] can be derived through maximum likelihood estimation using observed Fisher

information as follows (Cox and Hinkley, p.297, 1974):

Var[k] = I (3.14)

1- 21K=k

Taking the second derivative with respect to k of equation (3.7) gives

a2  - n. (3.15)

aJ2 k2'

Thus

Var[K] =n= n (3.16)
n o n o (2=;' ) 2 =( x . ri d ti ) i )

d -- E t .d(i) )

Var[[id (11)] can be derived as follows by noting that d (i) is simply a Poisson random
1*

variable, Nd(i), multiplied by a constant, t :

Vrdi=Var( Nd(i)• = 1 VrN~)
Vartd' i))] = I) (td(i)) 2 Var[Nd(01 (3.17)

1 nd 0)______

- Xd (i)td(i) nd(i)
(td(i)) 2  (td(i)) 2
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The standard error of id (11) is then simply the square root of Var[ id (11)1.

An example prediction can now be performed. Suppose, using data from the

first simulation run, equation (3.9) gives k = 4.293 and equation (3.10) gives 'd (11)

0.0003. Then

Xo (11) = IKd (11) = (4.293)(0.0003) = 0.00129.

Note that per the original assumption, K = 4.0, so we would expect a system whose DT

failure rate is 0.0003 to have an OT failure rate of 0.0012. So, at first glance this appears

to be a relatively good estimate of the true situation.

The variance and standard error of i. (11) is solved using equation (3.13) as

follows:

E[K] = K = 4.293
E[id (11) ] = 'd (11) = 0.0003
Var[K]= n. n. 44

nd)1 2 i- 2

n9rd(ll,() (6.at,) (10.25)2 =048
ki=1 td~i

Var•dll]=nd(ll) = 6 =l.5xlO-g
Var[ d (l101 (td(11))2 (20,000)2

finally

Var[Ro (11)] = Var[ K•X•d (1 1)1 = (0.4188)(1.5x10-8 ) + (1.5x10- 8 )(4.293) 2

+ (0.4188)(0.0003)2 = 32 x 10-8.

And the standard error of -o(11) is -62 x 10-8 = 5.66 x 10-4 . Table 6 summarizes the

results of this prediction.
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TABLE 6
SUMMARY OF RESULTS OF PREDICTION OF OT FAILURE RATE

ON SYSTEM 11 USING ESTIMATE OF K BASED ON FIRST REPLICATION
Actual Failure Rate X.o(11) 0.0012

Estimated Failure Rate X.(11) 0.00129

Variancefi. (11)] 32 x 10-8

Standard Error[ i (11) 5.66 x 10-4

K (11) ± 1 Standard Error (0.0007, 0.0019)

X0 (11) ±2 Standard Errors (0.0002, 0.0024)

b. Direct observation from OTfailure data.

Of course, the analyst could, if he desired, come up with a value for Xo (11)

by observing the empirical OT failure rate as usual. In this situation, the analyst would

note the number of failures which occur, no(ll), during the time on test, to(ll), and

derive the OT failure rate as follows:

0 = (1nl) (3.18)

For example, suppose that System 11 is operationally tested for a period of

5,000 hours and experiences 6 failures during that time. Then the OT failure rate

observed through operational testing would be
6

i.'(11)= 6 = 0.0012.
5000

Using the same reasoning as in equation (3.17), the variance of the observed

value is calculated as
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Var[i'(l) 1 l= ____N._(11 Var(N (1))

tn.((11)

66 24 x 10-8.
(5000)2

And the standard error of j'(11) is NF24x10F = 4.9 x 10-4. Table 7 summarizes the

results of these calculations.

TABLE 7
SUMMARY OF REST r.T3 OF DIRECT OBSERVATION OF OT FAILURE RATE

ON SYSTEM 11 FROM OT FAILURE DATA

Actual Failu e Rate X.(11) 0.0012

Estimated Failure Rate i." (11) 0.0012

Variance[i. (11)] 24 x 10-8

Standard Error[(1 1)] 4.9 x 10-4

G(11) ± 1 Standard Error (0.0007, 0.0017)

X (11) ±2 Standard Errors (0.0002,0.0022)

Unfortunately, this method would not save the analyst any time since he

would have to run the entire operational test procedure to derive a meaningful number.

Moreover, he would not be taking advantage of the available DT failure data.

c. Weighted average of predicted value and direct observation.

Suppose now that the analyst runs the entire operational test procedure as

above, but also desires to use the available DT failure data in an effort to improve his

estimate for the OT failure rate. Assuming the analyst has the data from the 10 other
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previous systems with which to derive the prediction, ,o (11) = kd (11), he can then

calculate a weighted average of the two estimates.

An estimator for the mean of a linear combination of two random variables,

X and Y, with common mean m and different variances, ox and o; can be constructed as

follows:

Let 6i= aX + bY, 0_<a,b_< l, a+b=l.

Then E[ril = am + bm = m(a + b) = m(1) = m,

f(a) = E[(rii- m)21 = E[(aX + (1-a)Y - m)2]

= E[(a(X - m) + (1 - a)(Y - m))2]

= E[a2 (X-m)2 + 2a(1-a)(X-m)(Y-m) + (l-a)2 (y-m) 21

= a2 Var[X] + (1 - a) 2Var[fl.

Differentiating with respect to a and setting equal to zero gives

at(a) = 2aVar[X] - 2(1 - a)Var[Y] = 0
aa

which yields

a[Var[X] + Var[Y]] = Var[Y]

or

Var[Y] AY,
Var[X]+Var[Y] - +)2

Similarly

b= Var[X] -

Var[X]+Var[Y] 2+•"
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Substitution then yields

e, = X1' +Xi .(3.19)/ +

Therefore an estimator for the OT failure rate, X. (i), can be constructed as follows:

KXd (i) _.o(i)

XC) Var[KX,(i)] Var[X<(i)]ko i) I0 (3.20)

"4Var[ kid GA Var[O (i)]

where Kd (i) represents the predicted value of the OT failure rate and Vo (i) denotes the

empirical OT failure rate observed during operational testing.

For example, the values obtained previously for KXd (11), the predicted

value, and X (11), the observed value, were 0.00129 and 0.0012 respectively. It was

shown earlier that the estimated variance for the predicted value was Výar[KXd ( 1)] = 32

x 10-8, and the variance of the observed value was Var[X.,'(11)] = 24 x 10- 8 . Inserting

these numbers in equation (3.20) gives

12.9x10-4 12xl0-

32x104 24x104 =12.39x 10-4.
1 1

32x10+ 24x10-4

The variance associated with this estimate can be constructed as follows:

Let Var[rhj = Var[aX + bY] = a2 Var[X] + b2 Var[Y].
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Substitution yields

.2 i°x.+ 2 Oy 1
2G =2 = (3.21)

m2

Therefore, the estimated variance of X. (11) is computed as follows:

S1 1 -

'Car[X° (11)] = 1 1 1 1 =13.7x10-.
+ +

Var[fKd (ll)] Var[R" (I l)] 32x10-+ 24x10-4

And the standard error of Xo(11) is F13.7 xI0- = 3.7 x 10-4. Table 8 summarizes the

results of these calculations.

TABLE 8
SUMMARY OF RESULTS OF WEIGHTED AVERAGE OF

PREDICTED VALUE AND DIRECT OBSERVATION OF OT FAILURE RATE
Actual Failure Rate X°(11) 0.0012

Estimated Failure Rate Xk (11) 0.00124

Variance[k 0 (11)1 13.7 x 10-8

Standard Error[R0 (11) 3.7 x 10-
: ~( 0.0009, 0,0016 )

X0 (11) ± 1 Standard Error

X0 (11) ±2 Standard Errors (0.0005,0.0020)

3. Comparison of the three methods for estimating the OT failure rate.

Table 9 summarizes the results obtained for each of the three methods of deriving

the OT failure rate for one replication of the simulation. They are arguably quite similar.

So to answer the question of which method is best, further analysis is required.
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TABLE 9
COMPARISON OF THE THREE METHODS FOR OBTAINING

THE OT FAILURE RATE
Statistic Prediction Method Direct Observation Weighted Average

Method Method
Actual Value 0.0012 0.0012 0.0012

Estimated Value 0.00129 0.0012 0.00124
Variance 32 x 10-8 24 x 10-8 13.7 x 10-8

Standard Error 5.66 x 10-4 4.9 x 10-4 3.7 x 10-4

Estimate ± 1 S.E. (0.0007, 0.0019) (0.0007, 0.0017) (0.0009, 0.0016)
Estimate ±2 S.E.s (0.0002, 0.0024) (0.0002, 0.0022) (0.0005, 0.0020)

Since the results of the three methods discussed previously were so similar, a

look at the asymptotic behavior of the three methods is in order. To facilitate this

analysis, four new "similar" systems were created, systems 11, 12, 13 and 14, each with

failure rates and test times of similar construction to the previous 10 systems, i.e.,

Ko(i) = KXd (i), where K is equal to 4.0 and Xt is also equal to 4.0. Each system also had

its own random seeds for both DT and OT failures. Table 10 summarizes the four new

systems.

TABLE 10
INITIAL DATA ON FOUR NEW "SIMILAR" SYSTEMS IN WHICH

ACTUAL K = 4.0 AND ACTUAL POISSON FAILURE RATES Xt = 4.0
System Actual DT DT test DT Actual OT OT test OT
number failure time random failure time random

rate (hours) seed rate (hours) seed
11 0.0003 13,333.33 12 0.0012 3,333.33 112
12 0.0005 8,000 22 0.002 2,000 122
13 0.0007 5,714.29 32 0.0028 1,428.57 132
14 0.0009 4,444.44 42 0.0036 , 1,111.11 142
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One thousand repetitions of a simulated OT and DT were run on each of the four

new systems, and then the exact same analysis as that done previously in section III.C.2

was performed for each replication. Grand estimates appear in Tables 11 through 14 in

the column entitled "Average value (n = 1000)" and were produced by averaging the

estimates of the following from all 1000 simulated observations, or sub-estimates:

1. The estimated OT failure rate derived from prediction, direct observation and

weighted average;

2. The estimated variance of the estimated OT failure rate derived from prediction,

direct observation and weighted average; and

3. The estimated standard error of the estimated OT failure rate derived from

prediction, direct observation and weighted average.

Then, in order to get an idea of the sample distribution of each of the above

super-estimates, the sample variance, sample standard deviation and coefficient of

variation8 were computed for the 1000 sub-estimates for each system. Finally, the

estimated mean-squared error, which is the sum of the square of the average of the biases

with the average of the variances over all replications, i.e.,

M§F = (Average of the biases)2 + (Average of the variances),

was calculated for each prediction method and placed in the last column of each

table. Figure 3 describes the situation.

8The coefficient of variation is simply the sample standard deviation divided by the sample average, and
serves as a measure of the spread of the sample.
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Estimate OT failure ] Estimate OT failure Estimate OT failure

Replication s rate, variance & rate, variance & rate, variance &
# std error by std error by direct std error by

prediction observation weighted average

Estimate OT failure Estimate OT failure Estimate OT failure
Replication rate, variance & rate, variance & rate, variance &

# E000 std error by std error by direct std error by
prediction observation weighted average

Avg of failure rate, Avg of failure rate, Avg of failure rate,
variance & std error variance & std error variance & std error
estimates over 1000 estimates over 1000 estimates over 1000

replications replications replications

Obtain variance and Obtain variance and Obtain variance and
standard deviation standard deviation standard deviation
of each estimate of each estimate of each estimate
over 1000 reps over 1000 reps over 1000 reps

Divide sample std Divide sample std Divide sample std
dev of each estimate dev of each estimate dev of each estimate
by its average value by its average value by its average value
to get coeff of var to get coeff of var to get coeff of var

Obtain mean Obtain meanObtain mean

squared error of squared error of squared error of
predicted estimate directly observed weighted averageestimate estimate

Figure 3 - Methodology for comparing different ways of estimating OT failure rate.
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a. New System 11.

The statistics on new System 11 are summarized in Table 11 and a graphical

summary is shown in Figure 4. Recall that actual Ao (11) = 0.00 12.

TABLE 11
NEW SYSTEM 11 - ESTIMATED OT FAILURE RATES AND OTHER

RELEVANT STATISTICS (ACTUAL k(l) = 0.0012)
Sub- Average Sample Sample Std Coeff of Mean

estimates value Variance Deviation Variation Squared
n=000)n=1000) (n=1000) Error

Prediction i(11) 0.0012 4.62x10 7  0.00068 57%

V[j(11)] 4.46x10 7  1-17x1o013 3.43x10"7  77% 4.46x10-7

SE[i°(l1)] 0.00062 5.5440"8 0.00024 39%

"Direct •'(11) 0.0012 3.734107 0.00061 51%

Observation V['(11)] 3.6x10-7  3.36x10 14  1.83x10 7  51% 3.6x10-7

SE[' (11)] 0.00058 2.87x10 7  0.00017 29%

Weighted 0.0010 2.2310"7 0.00047 47%
Average V[64 1)1 1.67×0 6. 1015 8.34x10 8  50% 2.07×10 7

SE[o(1 1)] 0.00039 1.410- 0.00012 31%

0 Actual Failure Reat. Mean Estimated Failure Rate i Mean Estimated Std Error

0.0012-

0.001.

0.0006.

0.0004.

0.0002.

Prediction Direct Observation Weighted Average

Figure 4 - Graphical summary of System 11 estimates.
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b. New System 12.

The statistics on new System 12 are summarized in Table 12 and a graphical

summary is shown in Figure 5. Recall that actual X. (12) = 0.002.

TABLE 12
NEW SYSTEM 12 - ESTIMATED OT FAILURE RATES AND OTHER

RELEVANT STATISTICS (ACTUAL X0 (12) =0.002)
Sub- Average Sample Sample Std Coeff of Mean

estimates value Variance Deviation Variation Squared
07-n=1000) ( (n=1000) Error

Prediction o(12) 0.0020 1.17x10"6 0.0011 55%

V[.o(12)] 1.234106 7.51x10'1 3  8.66x10-7  70% 1.23x106
SE[j.°(12)] 0.0010 1.46x40-7  0.00038 38%

Direct X(12) 0.0020 9.51x10"7  0.00098 49%
Observation V[i'(12)] 99 0 "7 2.38x10 13  4.88x10 7  49% 9.99x10-7

SE[M.(12)] 0.00096 7.42x10-8  0.00027 28%
Weighted o(12) 0.0017 5.91x10" 7  0.00077 45%
Average V[0(12)] 4 0-7 5.13x10" 4  2-26x10 7  49% 5.49x10-7

0.00065 3.71x10-8  0.00019 29%

New System 12

N Actual Failure Rate U Mean Estimated Failure Rate N Mean Estimated Std Error

0.002.

0.0015.

0.001.

Prediction Direct Observation Weighted Average

Figure 5 - Graphical summary of System 12 estimates.
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c. New System 13.

The statistics on new System 13 are summarized in Table 13 and a graphical

summary is shown in Figure 6. Recall that actual Xo (13) = 0.0028.

TABLE 13
NEW SYSTEM 13 - ESTIMATED OT FAILURE RATES AND OTHER

RELEVANT STATISTICS (ACTUAL n(13) = 0.0028)
Sub- Average Sample Sample Sid Coeff of Mean

estimates value Variance Deviation Variation Squared
(n=01000) ) (n=1000) Error

Prediction •,(13) 0.0028 2.33x10"6 0.0015 54%

V[•X(13)] 2.41x106 3.14x10 12  1.77x10"6 73% 2.41x106

SE[i.(13)] 0.0015 2.96x107 0.00054 36%
Direct X'(13) 0.0028 2.004106 0.0014 50%

Observation V[f'(13)] 1.96x106 9.82x10 13  9.91x10 7  51% 1.96x106

SE[R(13)] 0.0013 1.52x10 7  0.00039 30%

Weighted 0.0024 1.24410 0.0011 46%

Average V[i( 13)] 9.04x10"7  2.11x10"13  4"59x10" 7  51% 1.06x10-6

SI22] 0.00091 7.790- 0.00028 31%

Now yslsm 13

0 Actual Failure Rats N Mean Estimated Failre Rats 1 Mean Estinated Sid Error

0.003-

0.0025-

0.0015.

0.001,

0.0005.

0.
Prediction Direct Observation Weighted Average

Figure 6 - Graphical summary of System 13 estimates.
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d. New System 14.

The statistics on new System 14 are summarized in Table 14 and a graphical

summary is shown in Figure 7. Recall that actual X. (14) = 0.0036.

TABLE 14
NEW SYSTEM 14 - ESTIMATED OT FAILURE RATES AND OTHER

RELEVANT STATISTICS (ACTUAL (14) = 0.0036)
Sub- Average Sample Sample Std Coeff of Mean

estimates value Variance Deviation Variation Squared
(n=1000) _n=1000) (n=1000) Error

Prediction i(14) 0.0036 4.07x10 0.0020 56%

V[X,(14)] 3.93x10"6 8.90x10" 12  2.98x106 76% 3.93x0"6

SE[j.(14)] 0.0018 5.i8x1O-7 0.00072 40%

Direct i'(14) 0.0036 3.20xl0"6 0,0018 50%

Observation V[IX'(14)i 3.21x10-T 2.59x10"12  1.61×x10"T 50% 3.21x106

SE[i'(14)] 0.0017 2.45x10"7  0.00050 29%

Weighted (14) 0.0031 2.05x10-6 0.0014 45%

Average V[iq(14)] 1.474106 5.76x10"13  7.59x10"7  52% 1.72x106

SE[j (14)] 0.0012 1.31x10"7  0.00036 30%

New System 14

N Actual Failure Rate U Mean Estimated Failure Rate N Mean Estimated Std Error

0.004.

0.003.

0.0025.
0.002.

0.001S.
0.001.

0.0005.
0.

Prediction Direct Observation Weighted Average

Figure 7 - Graphical summary of System 14 estimates.
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D. RESULTS OF THE GAVER-JACOBS MODEL ANALYSIS

Simulation results indicate that the predicted value method and the observed value

method are unbiased and provide good estimates of the OT failure rate. The weighted

average method, although it gives a more precise estimate because of its smaller mean

squared error, is biased in that it tends to underestimate the actual failure rate. The

observed value method gives slightly better precision than the predicted value method,

since the mean squared error obtained with the observed value method tends to be slightly

less than that associated with the predicted value method. Notice, however, that except

for the very small price paid in terms of precision, the estimate obtained using the Gaver-

Jacobs predicted value method seems to estimate the OT failure rate nearly as well as

direct observation of the OT failure rate. This is significant since the Gaver-Jacobs

estimate can be used prior to the start of operational testing (provided the constant-K

model is nearly correct).

The bottom line is that if the relationship between the DT failure rate and the OT

failure rate proposed earlier does in fact exist, then the Gaver-Jaci,,bs method of estimating

the OT failure rate of a new system, i. (i) = kid (i), given that system's DT failure rate as

well as DT and OT data on previous similar systems, seems to provide a reasonable

estimate of the OT failure rate of the new system which performs nearly as well as direct

observation of the OT failure rate through operational testing. Moreover, the Gaver-

Jacobs estimate of the OT failure rate can be computed prior to the start of operational

testing.
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E. A HIERARCHICAL BAYES MODEL FOR ESTIMATION OF K

It is idealistic, in the previous model, to assume that all systems have exactly the same

value for K.9 Rather, assume that each system i has its own K value, Ki, and that it is

selected independently from a prior distribution. The gamma distribution, for example,

turns out to be conjugate, so integrals can be explicitly computed. Its density function is:

qK (K) = e-PK (pK)&Ip. (3.22)F(8)p"(.2

From equations (3.5) and (3.6) it can be seen that the likelihood of Ki, up to irrelevant

constants, is

L, (Ki; Xd, (i);i - data) = e-Kid(i)t°(i)Ki (' [e-' (i'td(' (i) (Xd (0)) n (i)+n*(i)] (3.23)

To obtain the marginal posterior density of Ki, equation (3.22) is re-written, up to

irrelevant constants, as follows:

((PIXd(*t(W ((+ PXd (i)t0 ()) ( + X (i)to (i)). (3.24)

F(-+n (i)) +

If the parameters p, 8 and Xd (i) were known, and the data available, i.e., no(i) and

t,(i), then one could compute the conditional expected value of Ki and use this as a point

estimate. However there are other, more interesting ways to use the posterior. First, it is

9The following explanation for the hierarchical Bayes model was developed by D. P. Gaver, Professor of
Operations Research, Naval Postgraduate School, in handwritten notes to the author, July 1994.
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necessary to evaluate the various parameters p, 8 and Ld (i). To do this, the "empirical

Bayes" method is used, meaning that the unknown Ki term is integrated out of equation

(3.23) to obtain

,= e-KXd(i)t"i)K, r(i) e dK" "'C 'i" ] (3.25)

The integral in the above expression can be reduced to

P K. (nb(i)+ 8)_le•(i)t,(i)+p)K,dK.

F(a) , (3.26)

Noting that the cumulative distribution function (CDF) of a gamma distribution with

parameters (no(i)+8) and (Xd(i)to(i)+p) has a known total area of 1.0, the following

identity can be stated:

( (i)t. (i) +Ki(nc)-e •i),.i),),dK 1. (3.27)

F(no (i) + 0

Rearranging equation (3.26) to take advantage of (3.27), equation (3.26) can be reduced

to

F(no (i) +)p(

F(B)(Xd (i)t. (i) + p)Onl*)+ 8  (3.28)
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Therefore, equation (3.25) can be re-written as

Li( (i); p; ;i-Wdata) = td [ )t (i))n +d (i) -r(n. (i) + 8)p8 ,+3 .(3.29)
']Ad ');P8;'- ata) [e-x (Xdf (8)(d (i)t0 (i) +P~.i

It is generally easier to work with the natural log of the likelihood function

ti = In(L0) = -Xd (i)td (i) +(nd (i) + n, (0i))ln(2.d (i)) + in(r(no (i) + 8))

+ 8In(p)- ln(Fi(8)) -(n (i) + 8)ln(kd (i)to0 (i) p)

The partial derivative of equation (3.30) with respect to Xd (i) is

n. (i)- X.d (i)t 0(i)ae nd (i) - Xd (i)td (i) +p P (3.31)
'ý.d (i---- = d Wi X.d (i)(d (i) + P)

Setting equation (3.31) equal to zero and solving for 'd (i) gives the maximum likelihood

estimator for Xd (i). Unfortunately, however, the parameters 8 and p are unknown.

One way to get at the parameters 5 and p is to obtain an initial estimate for Xd (i)

using the formula

d (i) (3.32)
td(i)

and then derive maximum likelihood estimators for 8 and p. One can then use these initial

estimates for 8 and p in equation (3.31) to obtain an adjusted value for •d(i) for each

system. It may be possible to continue these iterations until 5, 0, and d (i) all stabilize.
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Then, using 8 and 0, as the parameters for the gamma prior distribution, it is possible to

estimate the mean Ki factor and its variance using the relationships

E[ Ki] (3.33)

and

Var[Ki]( (3.34)

Assuming data exists on more than one "similar" system, say I of them, then the log-

likelihood function becomes, up to irrelevant constants

==i [~8n(P)+ln[r(n (i)]-(no(i)+•)l(Xd(i)(i) +p)]. (3.35)

The ratio of gamma functions in equation (3.35) can be simplified by expanding the

numerator and then canceling the denominator

F(no (i) + 8) (n. (i) + 8 - 1)(n. (i) + 8 - 2)..--(n.o(i) + 5 - n. (i))F(s)

F(8) I

f 1, Ž 0 (3.36)

=• (no (i) + 8-1)(n.o(i) + 8-2)---.(n.o(i) + 5- n.(i)), n.o(i)>1t .

Then the natural log of equation (3.36) becomes

(.(n.(i) J { 0, n. (i) =O
8)_n()__ =n (i)-I (3.37)

F(8) l•n(5+j), no(i)>l.
40
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Rewriting equation (3.35) gives

= •[In(p)+ f'(8) -(n. (i)+ 8) ln(d (i)t(i) + p)] (3.38)
i=1

which can be further simplified to

1[81hn(p) -(n. (i) + 8) ln(.d (i)t (i) +p)] +Y f'(8). (3.39)
i=il i=1

It is now a simple matter to take the partial derivatives of equation (3.39) with respect to

5 and p which, when set equal to zero, will enable one to solve for maximum likelihood

estimators for the two parameters. Specifically

= I ln(p)- ln(X,(i)t. (i)+ p)+ Nf (5) (3.40)

where
r0, no(i)=O

f fn n(i1] (3.41)

and

X Xd (i)to (i) - no (i)
lp (Xdit p . (3.42)a"-P i=1 ( 'd(i)to(i)+P) (.2

Finally, the preceding two equations, (3.40) and (3.42) along with (3.31) give I + 2

equations with I + 2 unknowns which can be solved to obtain 'd (i), 1 and ý.

So far, the author has not been able to solve the system of 1+2 equations and 1+2

unknowns. Solution with I = 10 similar systems was attempted using the non-linear solver
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included with Microsoft Excel 4.0 with solver options set as follows: i.-wton search

method, using forward derivatives, with tangential estimates. Moreover, attempts to use

the same methodology with only two "similar" systems; i.e., four ,-quaUions and four

unknowns, have also failed. The author believes that equations (3.31), (3.40) and (3.42),

or at least some combination of the equations, are ill-conditioned in that they fail to

converge at a common point in (1+2) space. An attempt was made to re-parameterize the

equations, substituting the variables Xd(i), p and 5 with exponentials, however this

attempt also failed to conveige.

While it appears the hierarchical Bayes methodology has promise, as well as a certain

intuitive appeal, further Tesearch is called for in order to better condition the set of

equations needed to use the model. Other issues to consider are whether or not the

gamma prior is appropriate for this model and if so, how the set of equations needed to

use the model can be simplified or re-parameterized so that reliable model parameter

estimates can be obtained.
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IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The purpose of this thesis is to (1) investigate the behavior of a statistical procedure

used to determine the length of time needed to test a continuously operating system when

the system under test is assumed to have an exponential time to failure distribution, but

when in fact the system does not have an exponential time to failure distribution and rather

may have a time to failure distribution that more closely resembles a Weibull distribution;

(2) to examine the behavior of the Gaver-Jacobs estimator for the relationship between

DT and OT failure rates using a Monte Carlo simulation; and (3) to introduce a

hierarchical Bayes method for estimation of the relationship between the DT and OT

failure rates. In the first part of the thesis, the parameters of the procedure are chosen

based on the assumption of an exponential time to failure distribution. The behavior of the

procedure is then investigated under the assumption that the time between failures are

independent, having a Weibull distribution with the same mean time to failure. The

intention is to test whether or not use of the Weibull distribution will result in fewer test

hours to verify that a system under test has a mean time to failure which meets or exceeds

a minimum acceptable value at a given level of confidence, and also to test whether or not

the 0TAs are misstating the confidence they report in their operational testing results

when the exponential distribution is used to model a system whose true failure rate

function is that of a Weibull distribution. In the second part of the thesis, the Gaver-

Jacobs estimator is examined in terms of the consistency and variability of the OT failure

rate derived using that estimator compared to other methods of establishing the OT failure

rate. Finally, in the third part of the thesis, a hierarchical Bayes model is proposed for the
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ultimate purpose of being able to describe the mean and variance associated with a random

relationship between DT and OT failure rates.

B. CONCLUSIONS

1. On comparison of the exponential and Weibull failure models.

The first analysis suggests that operational testing agencies can, under certain

circumstances, reduce the amount of time needed to demonstrate that the mean time to

failure (MTTF) of a continuously operating system is at least as large as the minimum

acceptable value (MAV) if the system's true underlying failure distribution is Weibull with

shape parameter 3 > 1. However, the shape parameter is seldom, if ever, known or even

estimable without expending valuable test resources, so it is unlikely that an OTA could

actually save any time or resources with this methodology. Moreover, from the

perspective of confidence levels, the analysis suggests that confidence in one's result is not

sacrificed when the exponential distribution is used to model a system which has a non-

constant failure rate, since it appears that use of the exponential distribution on a truly

Weibull system seems to cause the OTA to overestimate the number of hours needed to

test the MAV for the M'TrF to a given confidence level, and also to underestimate the

confidence it reports in its results under the incorrect assumption of an exponential

distribution. However, for reasons mentioned previously, these results may not be true in

general. Therefore, it is concluded that there is currently little to be gained by attempting

to model the time between system failures with the Weibull distribution as previously

suggested, particularly if very few observations of time to failure are available.

2. On using the Gaver-Jacobs method to combine DT and OT failure data.

The second analysis indicates that the Gaver-Jacobs method for estimating a

system's OT failure rate given that system's DT failure rate as well as failure data on

previous similar systems produces a reasonable estimate of the actual OT failure rate
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(when the OT failure rate behaves as expected). In other words, if the relationship

between the DT and OT failure rates for a certain system is such that it can in fact be

estimated from previous similar systems, then the Gaver-Jacobs method gives a good

estimate of the OT failure rate given that system's DT failure rate. In fact, the estimate

provided by the Gaver-Jacobs method appears to be nearly as good as direct observation

of the OT failure rate obtained through actual testing. Thus, if it can be shown that

inferences about the failure rate of a system can in fact be made on the basis of previous

similar systems, then the Gaver-Jacobs method of predicting a new system's OT failure

rate from previous DT failure data has some potential utility. In particular, this OT failure

rate prediction could be used in ways which would aid decisions as to when to begin OT

as well as to augment follow-on OT in an effort to reduce needed testing resources.

3. On the hierarchical Bayes Model for estimating K.

The third analysis is incomplete. It was hoped that the hierarchical Bayes method

given would provide a means by which to estimate K, the relationship between the DT and

OT failure rates, when K is assumed to be a random variable with some prior distribution.

Regretfully, the equations derived for the maximum likelihood estimators for the

parameters of the gamma prior have proved to be difficult to solve satisfactorily. The

author was unable to find a meaningful solution to the set of 1+2 equations and 1+2

unknowns, where I represents the number of "similar" systems for which previous DT and

OT data exist. If such a solution were available it could be used to predict future failure

rates by means of a Bayesian calculation. Investigation of such a procedure is left for a

later time.

C. RECOMMENDATIONS FOR FURTHER STUDY

Concerning the notion of modeling the failure distribution of a continuous system

using the Weibull distribution, OTAs could clearly benefit from being able to use this
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approach when appropriate. If the time between failures for a system has a Weibull

distribution, then proper choice of that system's Weibull shape parameter would probably

enable the OTA to reduce the required test resources while maintaining a specified level of

confidence in the result of their test. Unfortunately, there is very little data in existence

which can assist analysts in estimating the shape parameter of a system unless it is assumed

that shape parameter information can be "borrowed" from similar systems. Moreover, it is

seldom worth the effort needed to submit the system to special testing just to determine

it's shape parameter. Finally, there is some doubt that the necessary relationship between

expected time to failure and the numbers of failures observed in a fixed time exists

between the exponential and Weibull distributions. Therefore, one area for further

research would be in devising methods by which analysts could estimate the shape

parameter of a system prior to testing; see the "borrowing information" idea suggested

above. Another area of further research, which would be useful in the area previously

mentioned, would be in creating a database of system types and the associated Weibull

shape parameters of their inter-failure distribution. A third area of investigation would be

in identifying those combinations of exponential and Weibull parameters in which a

suitable relationship exists between the expected time to failure and the numbers of

failures observed in a fixed time.

Concerning the combining of DT and OT failure data, the ability to make inferences

about the OT failure rate of a system prior to testing would certainly benefit the OTAs by

enabling them to defer testing until they are reasonably sure the system will pass the test.

Moreover, the ability to augment future OT failure data with pseudo-data obtained from

prior DT failure data would enable the OTAs to reduce the amount of testing resources

needed to verify reliability thresholds. To date, the notion of inferring the relationship

between DT failure data and OT failure data based on previous similar systems is untested.
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Therefore, further areas of research in this field include the investigation of actual data on

several similar systems to determine the feasibility of detecting any relationship that might

exist between them and also to investigate the nature of the relationship which is found.

Finally, concerning the estimation of the K factor using a hierarchical Bayes

methodology, further research is needed in order to develop a more stable set of equations

for the parameters of the gamma prior. Moreover, one could consider whether or not a

gamma prior is appropriate for this model, or whether some other prior distribution might

be more appropriate.
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APPENDIX A. ALTERNATIVE METHOD OF DERIVING TIME TO TEST

There is an alternative way to determine, for a given level of confidence, the length of

time, t, needed to test a continuous-type system in order to demonstrate that the true

M=TF of the system is at least as large as the MAV.10

Let the MAV be denoted by 0, the 100oa percent lower confidence limit for 1, the true

MTTF. The usual test plan is to test for a length of time, t, and observe F, the random

number of failures to occur in (0, t]. The planned test time, t, is chosen so that if one

failure is observed, the computed lower confidence limit, TL' will be equal to the MAV, 0.

The lower confidence limit, yL, is the solution for 'y in the equation

F (tL)e4ý
I-a = P(T> t) = P(N(t) < F)-= i (A.1)

where T is the time to the (F+1l)st failure.

The following relationship can be used to solve for 'yin equation (A. 1)

e f I -'-itd = P(x' > 2X) (A.2)
= j. x"T2&

where X2 denotes a chi-square random variable with 2a degrees of freedom. Equation

(A. 1) then becomes

10The author is deeply indebted to W. Max Woods, Professor of Operations Research, Naval Postgraduate
School, for his guidance in the derivation of this alternative method.
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12 - >2t (A.3)

which implies that

2t 2 =2 '= 2t (A.4)

Xa.2(F+1)

where X,,,2(F+I) is the ath percentile of the chi-square distribution with 2(F+l) degrees of

freedom. Since the solution for y is yL, and the MAV is 0,

0 =tYL = 2 • (A.5)
Xa.2(F+l)

Therefore

2

t = o Xa,2(•l). (A.6)2

If F = I and a = 0.8, then x0.4 = 5.999 and thus, from equation (A.6), t = 30, as

shown earlier in section I.A. Note that equation (A.6) holds for all positive values of 0

and F, making this a very simple way to solve for t given any values of 0 and F.
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APPENDIX B. CODE FOR RANDOM POISSON ARRIVAL GENERATOR

In this appendix, the Poisson failure generator discussed in Chapter MII is given. The

program was used to simulate the number of failures during a given phase of testing for a

given exponential failure rate and a given test duration. The program was written in

Pascal and executed using Turbo Pascal 6.0 (Borland, 1990), a commercial Pascal

package.

Program GenerateFailures;

uses TOOLBOX, CRT;

Author: Timothy P. Anderson, Naval Postgraduate School
Date: 27 March 1994
Purpose: To generate numbers of failures ihat occur during a pre specified

time, TIME, when the underlying failure distribution is
exponential with rate LAMBDA. This program is written in partial
support of a thesis by the author.

var
Lambda, Time, X, CumTime, Rand: real;
I, N, Count: integer;
View: boolean;
OutFile: string;
Ch: char;

begin
CRT.Clrscr;
writeln ('Welcome to Program GenerateFailures... Follow instructions...');
writeln; writeln;
write ('Specify the random seed:> '); readIn (randseed); writeln;
write ('Specify the exponential failure rate, Lambda:> ');
Lambda:= TOOLBOX .GetReal; writeln;
write ('Specify the testing time allowed:> ');
Time:= TOOLBOX.GetReal; writeln;
write ('Specify number of iterations to run:> ');
Count:= TOOLBOX.GetInteger; writeln;
writeln ('You may view output on screen or send it to a text file.');
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write ('Do you want to view it on the screen? (Y/N):> ');
View:= TOOLBOX.GetAnswer; writeln; writeln; writeln;
if View = False then begin

write ('Specify the output file (including path):> ');
read (OutFile); readln;
SYSTEM.Assign (Output, OutFile);
rewrite (Output);

end; (if)

for I := 1 to Count do begin
X := 0;
N:= 0;
CumTime := 0;
repeat

Rand := Random;
X := -(l/Lambda)*ln(l - Rand);
if (X + CumTime) > Time then begin

writeln (N);
CumTime := Cumlime + X;

end
else begin

N:= N + 1;
CumTime := CumTime + X;

end; (if)
until CumTime > Time;

end; {for}

SYSTEM.Close (Output);
SYSTEM.Assign (Output, 'con');
rewrite (Output);

if View = False then begin
writeln ('Output sent to ', OutFile,'... Press any key to exit.');
Ch := Readkey;

end
else begin

writeln ('Press any key to exit.');
Ch := Readkey;

end;

end.
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